
	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

Grow with Code Grade 3-4

Lesson Plan
Coding Tool Scratch (or ScratchJr)

Time Required Two periods
Math Curriculum Connections

Grade 3 and 4

Algebra: Coding
C3. Solve problems and create computational
representations of mathematical situations
using coding concepts and skills

Specific Expectations
C3.1 solve problems and create
computational representations of
mathematical situations by writing and
executing efficient code, including code that
involves sequential, concurrent, and repeating
events
C3.2 read and alter existing code, including
code that involves sequential, concurrent, and
repeating events, and describe how changes to
the code affect outcomes

Science Curriculum Connections

Grade 3
Life Systems: Growth and Changes in Plants
3. demonstrate an understanding that plants grow and
change and have distinct characteristics

Specific Expectations
3.1 describe the basic needs of plants, including air,
water, light, warmth, and space
3.4 describe how most plants get energy to live
directly from the sun

Grade 4
Life Systems: Habitats and Communities
3. demonstrate an understanding of habitats and
communities and the relationships among the plants
and animals that live in them

Specific Expectations
3.1 demonstrate an understanding of habitats as areas
that provide plants and animals with the necessities
of life (e.g., food, water, air, space, and light)
3.3 identify factors (e.g., availability of water or
food, amount of light, type of weather) that affect the
ability of plants and animals to survive in a specific
habitat

Description
What do plants need to grow? Using hands-on activities combined with on-screen coding activities,
students will explore plants' needs and represent them using coding concepts. Students will practice
using loops to build a program using Scratch to explore repeating patterns and concurrent events in
the context of growing plants.

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

Success Criteria
By the end of this lesson, students should be
able to describe and assign events as either
sequential or concurrent. They should be able
to use coding controls such as loops to
describe repeating events, and explain, using
coding algorithms, programs that include
sequential, concurrent, nested, and repeated
events.

Materials and Media
• Computer or iPad with access to Scratch (or

Scratch Jr if using Coding Activity Variation)	
• Grow with Code Handout	
• Grow with Code Coding Guide or Grow With

Code Variation – Scratch Jr Coding Guide for
Beginners	

Computational Thinking Skills

This lesson uses both a hands-on unplugged activity and an online block-based coding
exercise to reinforce the concepts of algorithmic thinking and loops.

In the unplugged activity, students will explore the logic of sequential, concurrent, and nested
events to see how rearranging the set of instructions in code (the algorithm) affects the output.
They will also practice using loops to repeat events and make code more efficient. The Grow
with Code Handout provides exercises that allow students to practice applying these
concepts to instructions relating to plants and plant growth.

In the online activity, students will be able to combine coding concepts to examples of factors that
affect plant growth in the environment. They will build and modify code using sequential, concurrent,
and nested events, as well as control structures such as loops and conditional statements, to describe
how the appearance of a plant sprite (output) changes, when it interacts with other graphical elements
in the program.

The Grow with Code Coding Guide document for this lesson includes a detailed step-by-step
procedure for using Scratch.

For a simplified version of this activity for beginner coders, there is also a step-by-step Grow with
Code Coding Guide for Beginners, which uses Scratch Jr., a free block-based coding application
with illustrated blocks in place of text.

Introduction

Introduction to Algorithmic Thinking
In coding, an algorithm is a set of steps (or instructions) that tells a computer program how to
accomplish a task. Using good algorithms — writing good instructions — lets you create
interesting and important programs.

A computer program cannot interpret instructions and make their own decisions like humans
do. They can only follow instructions exactly as they are written. They can’t add steps or
change their order. So, it’s important that, when you plan your code, you arrange your

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

instructions in a way that is clear, specific, and following the correct sequence.

Sequential events are steps that occur one right after the other. A computer program will start
at the first step in the sequence, continue to the second step, then the third, and keep going in
order until the final step is reached.

Concurrent events are steps that occur at the same time or during overlapping periods of
time. In this lesson, we will be describing concurrent code in both the unplugged activity and
in the Scratch coding activity by creating separate programs start at the same time.

Repeated events are described in code using loops. The set of instruction contained within a
loop will repeat until a condition is met to tell the computer program to exit the loop and move
on to the next steps of the algorithm. The condition of the loop might be to repeat forever, to
repeat for a set number of cycles, or until an event occurs (e.g., a game might loop until all of
the player lives are used up, at which point the program will exit the loop to trigger a “Game
Over” screen).

Nested events are control structures, like loops and conditional statements, that are placed
inside other control structures. An example of this would be a loop nested inside a loop.
Nesting is useful for simplifying a program and making the code more efficient. In this lesson
students will explore loops nested inside of loops during the unplugged activity, and
conditional statements nested inside loops in the online coding activity.

Pseudocode is the process of writing out code offline, to help plan for what will be input with the
computer later. Using pseudocode helps make code more efficient as it eliminates potential errors
before investing too much time into the programming language. Students will practice planning their
code by writing out instructions, incorporating control structures such as loops to describe repeated
events, and clearly identify concurrent sets of instructions.

Introduction to Growth and Changes in Plants
We can describe plant growth as a sequence or series of steps with a specific order. For
example:

1. A seed is planted and watered.
2. The seed germinates and becomes a seedling with roots and a sprout.
3. The seedling grows into an adult plant with a stem and leaves.
4. The adult plant produces flowers.
5. The flowers are pollinated by insects, animals, and with help from the wind.
6. The pollinated flowers produce fruit.

We can also describe plant growth using loops, since the steps involved in plant growth repeat

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

to form a cycle. For example:

1. A seed is planted and watered.
2. The seed germinates and becomes a seedling with roots and a sprout.
3. The seedling grows into an adult plant with a stem and leaves.
4. The adult plant produces flowers.
5. The flowers are pollinated by insects, animals, and with help from the wind.
6. The pollinated flowers produce fruit.
7. The fruit contain seeds that are spread by animals and dropped fruit.
8. Return to step one.

In this lesson, students will practice building and modifying algorithms, and they will apply
this learning to describe the steps involved in plant growth.
Action

Unplugged Activity

The goal of this unplugged activity is to introduce the concepts of sequential versus concurrent events
and the use of loops to repeat events. The activity will use a form of pseudocode to describe code as
sets of instructions.

Part one: Sequential Steps
In coding, an algorithm is a series of instructions, or steps. Programs will read and execute
your code in the order that you write it — so your order, or sequence, is important!

Let’s look at a simple set of instructions.

Write the following instructions on the board and draw a box around the steps:

What are these instructions telling us to do? How would you follow these instructions?

Demonstrate the first sequence (described in the example above) by writing out the steps on

1. Stand up

2. Clap your hands

3. Clap your hands

4. Clap your hands

5. Sit Down

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

the board and having students execute the moves in order. Repeat this activity with students
selecting new movements and their sequence.

Part two: Adding Loops (repeating steps)
In coding, we use loops as an instruction to repeat steps. This makes the code more efficient
and easier to read than if we wrote out our steps again and again (compare the difference
between saying “take one step forward three times” and “take one step forward then take one
step forward then take one step forward”).

For example, we can make the sequence from our first exercise more efficient by adding a
loop. So, instead of writing out the step “clap your hands” three times, we only need to write it
out once and use a loop to communicate that we are going to repeat that step three times.

We will represent our loop with a circle drawn on the board. Every step contained within the
circle will be repeated. We will indicate the number of times that we are repeating the steps by
writing a number next to the loop circle. It would look something like this:

Have students execute the moves in these instructions. The result should be the same as our
first sequence, but with fewer steps. Repeat this activity with students selecting new
movements and their sequence. Have them experiment with how many steps they place inside
a loop and the number of repetitions that they assign to the loop.

What happens if they place a loop around the entire set of instructions? (Answer: the entire set
of instruction gets repeated.)

What happens if you nest loops (e.g., put loops inside of loops)? If we place a loop around the
example above:

1. Stand up

2. Clap your hands

3. Sit Down

3

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

Now students would have to repeat the sequence (stand up, clap hands three times, sit down)
twice (stand up, clap hands three times, sit down, stand up, clap hands three times, sit down).
Note that this loop treats the entire sequence as a unit (e.g., the new loop does not mean that
you clap your hands six times in a row before moving to the next step).

Part three: Concurrent Steps

In our previous two exercises, we are executing our steps one at a time, in order. But what do
you do if you want to tell your program to do two things at the same time?

We will indicate concurrent programs by drawing the steps that we want to have happen at the
same time in side-by-side boxes.

For example, say that we want to instruct our program to count to ten out loud at the same
time that they run our original stand up - clap your hands – sit down program:

Event 1: Event 2:

Note: Students may suggest describing the program for Event 2 as a series of steps (e.g., 1.
Say “one” out loud, 2. Say “two” out loud, etc.) and this is also acceptable.

Demonstrate the above example to by writing out the concurrent sequences on the board and
having students execute the instructions from both Event 1 and Event 2 at the same time.

1. Stand up

2. Clap your hands

3. Sit Down

3
2

1. Count to 10 out loud 1. Stand up

2. Clap your hands

3. Sit Down

3

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

Repeat this activity with students selecting the movements and their sequences.

Part four: Putting it all together
	
Now that students have practiced using sequential and concurrent events, loops and nested
loops, encourage them to apply this learning by building a dance (consider: how would you
describe the instructions for dances like the hokey pokey?). This can be done with breakout
groups who then present their dance codes to the class for everyone to try by following their
code.

If a student group’s dance instructions are unclear or result in a dance different than what the
students had intended, then there is a great opportunity as a class to “debug” the dance moves.
Usually this involves simplifying instructions (e.g., making sure that each step only describes
one action) and separating complicated instructions into shorter, concurrent events.

For example: if a dance includes a step such as “raise your right arm and shake it” the
debugging process might look like this:

- Clarify: are you raising your right arm AND THEN shaking it? If so, this step should
be separated into two steps in the same sequence (1. Raise your right arm; 2. Shake
your right arm)

- Are you raising your right arm WHILE shaking it? If so, then these steps should be
broken into concurrent events

Event 1: Event 2:

	
Remind students that when they are planning their code, that they can write out their
algorithms using this sort of format to help map out their instructions on paper before moving
to the coding software.

The Grow with Code Handout provides additional exercises for students to describe
instructions using sequential, concurrent, and repeating events.
	
Coding Math Activity
The goal of the coding activity is to use the block-code application Scratch to create a plant sprite that
will “grow” (increase in size) when it touches factors (sunlight, water) that support plant growth. This
code will allow students to practice using loops and nested events.

A detailed step-by-step guide to building this program in Scratch, including opportunities for

1. Shake right arm 1. Lift right arm

	
	

Sciencenorth.ca/schools
Science North is an agency of the Government of Ontario and

a registered charity #10796 2979 RR0001

extension, is described in the Grow with Code Coding Guide.

For students who are pre-literate or who are absolute beginners to coding, refer to the simplified
coding guide — Grow With Code Variation — Scratch Jr. Coding Guide for Beginners — In
this simplified coding guide, we will use Scratch Jr. to create a scene with a background, a sun that
moves when you click it, a raincloud that moves when you click it, a plant that grows larger when you
click it, and flowers that appear.

The simplified coding lesson uses Scratch Jr. instead of Scratch. Scratch Jr. uses pictograms
on their coding blocks instead of text to illustrate that block’s functions. This program will be
useful for students whose literacy skills are not yet at a level where they can easily understand
the language written on Scratch blocks, or as practice to familiarize students with the logic of
block coding and building basic algorithms.
	
Closure and Assessment

By the end of this lesson, students should be able to identify coding elements as sequential,
concurrent, or nested and describe how these different instruction arrangements affect how
instructions (algorithms) are executed. Students should be able to identify loops and
describe how the instruction contained within loops are repeated.

For assessment, collect the Grow with Code Handout from the students. Review their
work to ensure that they understood the concepts of sequential events, concurrent events,
and loops by evaluating their responses using the answer key.

Adaptations
• The actions used in the unplugged

activity can be adapted to fit students’
mobility and/or accessibility needs

• The symbol system used to indicate
event algorithms and loops can be
adapted to fit students’ accessibility
needs (including arranging physical
images of steps)

• A variant coding guide is included
among resources for this lesson for
use by pre-literate students who may
find the text on Scratch coding blocks
inaccessible.		

Extensions
• Students who finish their codes early

can add more factors that affect their
plant sprites. Details for opportunities
for extension are included in the
Grow with Code Coding Guide.

